
Prometheus Install & Configurations

Prometheus Installation

• You can download the full distribution from

https://prometheus.io/download/

• MacOs, Windows, Linux, and some Unix distributions are supported

• After extracting you’ll get a prometheus executable (Prometheus.exe for

windows), which you can use to run Prometheus, for example:

• /prometheus --config.file /path/to/prometheus.yaml

https://prometheus.io/download/

Demo: Installing Prometheus

Installation files

Accessing Prometheus

Demo: Node exporter

1. Node Exporter
2. Windows exporter
3. Apache exporter
4. MySQL server exporter
5. Docker Daemon

Demo: Go Instrumentations

Prometheus: Configurations

Prometheus is configured via
- Command-line flags and
- A configuration file.

While the command-line flags configure immutable system parameters (such as storage locations, amount
of data to keep on disk and in memory, etc.),
The configuration file defines everything related to scraping jobs and their instances, as well as which rule
files to load.

To view all available command-line flags, run ./prometheus -h.

Prometheus Reload without command line restart
===
$ curl -i -XPOST localhost:9090/-/reload # (when the --web.enable-lifecycle flag is enabled).
$ killall -HUP prometheus
$ sudo systemctl daemon-reload # (when the --web.enable-lifecycle flag is enabled).
$ sudo systemctl restart prometheus

Configuration file

To specify which configuration file to load, use the --config.file flag.

The file is written in YAML format, defined by the scheme described below. Brackets indicate that a parameter is optional.
For non-list parameters the value is set to the specified default.

Generic placeholders are defined as follows:

<boolean>: a boolean that can take the values true or false
<duration>: a duration matching the regular expression [0-9]+(ms|[smhdwy])
<labelname>: a string matching the regular expression [a-zA-Z_][a-zA-Z0-9_]*
<labelvalue>: a string of unicode characters
<filename>: a valid path in the current working directory
<host>: a valid string consisting of a hostname or IP followed by an optional port number
<path>: a valid URL path
<scheme>: a string that can take the values http or https
<string>: a regular string
<secret>: a regular string that is a secret, such as a password
<tmpl_string>: a string which is template-expanded before usage

scrape_interval
How frequently to scrape targets
by default. default = 1m

scrape_timeout
How long until a scrape request
times out. default = 10s

evaluation_interval
How frequently to evaluate
rules. default = 1m

external_labels:
The labels to add to any time
series or alerts when
communicating with external
systems (federation, remote
storage, Alertmanager).

query_log_file
File to which PromQL queries are
logged. Reloading the
configuration will reopen the
file.

rule_files
Rule files specifies a list of globs.
Rules and alerts are read from
all matching files.

scrape_configs
A list of scrape configurations.

alerting:
alert_relabel_configs:

[- <relabel_config> ...]
alertmanagers:

[- <alertmanager_config> ...]
Alerting specifies settings
related to the Alertmanager.

Flags:
-h, --help Show context-sensitive help (also try --help-long and --help-man).

--version Show application version.
--config.file="prometheus.yml"

Prometheus configuration file path.
--web.listen-address="0.0.0.0:9090"

Address to listen on for UI, API, and telemetry.
--web.read-timeout=5m Maximum duration before timing out read of the request, and closing idle connections.
--web.max-connections=512 Maximum number of simultaneous connections.
--web.external-url=<URL> The URL under which Prometheus is externally reachable (for example, if Prometheus is

served via a reverse proxy). Used for generating relative and absolute links back to
Prometheus itself. If the URL has a path portion, it will be used to prefix all HTTP
endpoints served by Prometheus. If omitted, relevant URL components will be derived
automatically.

--web.route-prefix=<path> Prefix for the internal routes of web endpoints. Defaults to path of --web.external-url.
--web.user-assets=<path> Path to static asset directory, available at /user.
--web.enable-lifecycle Enable shutdown and reload via HTTP request.
--web.enable-admin-api Enable API endpoints for admin control actions.

--web.console.templates="consoles"
Path to the console template directory, available at /consoles.

--web.console.libraries="console_libraries"
Path to the console library directory.

--web.page-title="Prometheus Time Series Collection and Processing Server"
Document title of Prometheus instance.

--web.cors.origin=".*" Regex for CORS origin. It is fully anchored. Example: 'https?://(domain1|domain2)\.com'
--storage.tsdb.path="data/"

Base path for metrics storage.
--storage.tsdb.retention=STORAGE.TSDB.RETENTION

[DEPRECATED] How long to retain samples in storage. This flag has been deprecated, use
"storage.tsdb.retention.time" instead.

--storage.tsdb.retention.time=STORAGE.TSDB.RETENTION.TIME
How long to retain samples in storage. When this flag is set it overrides
"storage.tsdb.retention". If neither this flag nor "storage.tsdb.retention" nor
"storage.tsdb.retention.size" is set, the retention time defaults to 15d. Units
Supported: y, w, d, h, m, s, ms.

--storage.tsdb.retention.size=STORAGE.TSDB.RETENTION.SIZE
[EXPERIMENTAL] Maximum number of bytes that can be stored for blocks. Units supported:
KB, MB, GB, TB, PB. This flag is experimental and can be changed in future releases.

--storage.tsdb.no-lockfile
Do not create lockfile in data directory.

--storage.tsdb.allow-overlapping-blocks
[EXPERIMENTAL] Allow overlapping blocks, which in turn enables vertical compaction and
vertical query merge.

--storage.tsdb.wal-compression
Compress the tsdb WAL.

--storage.remote.flush-deadline=<duration>
How long to wait flushing sample on shutdown or config reload.

--storage.remote.read-sample-limit=5e7
Maximum overall number of samples to return via the remote read interface, in a single
query. 0 means no limit. This limit is ignored for streamed response types.

--storage.remote.read-concurrent-limit=10

--storage.remote.read-concurrent-limit=10
Maximum number of concurrent remote read calls. 0 means no limit.

--storage.remote.read-max-bytes-in-frame=1048576
Maximum number of bytes in a single frame for streaming remote read response types before
marshalling. Note that client might have limit on frame size as well. 1MB as recommended
by protobuf by default.

--rules.alert.for-outage-tolerance=1h
Max time to tolerate prometheus outage for restoring "for" state of alert.

--rules.alert.for-grace-period=10m
Minimum duration between alert and restored "for" state. This is maintained only for
alerts with configured "for" time greater than grace period.

--rules.alert.resend-delay=1m
Minimum amount of time to wait before resending an alert to Alertmanager.

--alertmanager.notification-queue-capacity=10000
The capacity of the queue for pending Alertmanager notifications.

--alertmanager.timeout=10s
Timeout for sending alerts to Alertmanager.

--query.lookback-delta=5m The maximum lookback duration for retrieving metrics during expression evaluations and
federation.

--query.timeout=2m Maximum time a query may take before being aborted.
--query.max-concurrency=20

Maximum number of queries executed concurrently.
--query.max-samples=50000000

Maximum number of samples a single query can load into memory. Note that queries will
fail if they try to load more samples than this into memory, so this also limits the
number of samples a query can return.

--log.level=info Only log messages with the given severity or above. One of: [debug, info, warn, error]
--log.format=logfmt Output format of log messages. One of: [logfmt, json]

Client Libraries – Golang Example

• https://github.com/prometheus/client_golang

• Officially supported language

• Easy to implement:

• Supported metric: Counter, Ganga, Summary and Histogram

Client Libraries – Golang Example

• Gauge

Client Libraries – Golang Example

• Adding labels

Client Libraries – Golang Example
• Histogram

Client Libraries – Golang Example

• Summary

Pushing Metrics - Go

Prometheus

Pushing Metrics – Go Example
• Go example:

Querying

Prometheus

Querying Metrics – Introduction

• Prometheus provides a functional expression language
called PromQL
• Provides built in operators and functions
• Vector-based calculation like Excel
• Expressions over time-series vectors
• PromQL is read-only
• Example:

Querying - Expressions

Prometheus

Querying Metrics – Introduction

Querying

Demo

