Lets Lea

PromOQL

+ Non-SQL Query Language
+ Better for metrics computation

+ Only does reads

2200p:5chool

Lets Learn, Share & Practice DevOps

Non-SQL Query Language

PromQL: rate(api http requests total([5m])

SQL: SELECT job, instance, method, status, path, rate(value, Sm) FROM api http requests _total

PromQL: avg by(city) (temperature celsius{country=“germany”|))

SQL: SELECT city, AVG(value) FROM temperature celsius WHERE country="germany* GROUP BY city

PromQL: rate(errors{jcb="foo”}[Sm]) / rate(total{job="foo”™) [5m])

sSQLu

SELECT errors.job, errors.inatance, [.more labels.), rate(errors.value, 5m) /
rate(total .value, Sm) FROM errors JOIN total ON [..all the label equalities.] WHERE
errors.job="foo” AND total. job="foo"

Lets Learn, Share & Practi;-bevo,w l
- ___]

Prometheus provides a functional expression language
called PromQL

* Provides built in operators and functions

* Vector-based calculation like Excel

* Expressions over time-series vectors

* PromQL is read-only

e Example:

100 - (avg by (instance) (irate(node_cpu_seconds_total{job='node_exporter', mode="idle"}[5m])) * 100)

22000:5choot

Lets Learn, Share & Practice DevOps

Resolution

* A range query's query step(aka Resolution) is completely
independent from any range durations specified in the PromQL
expression it evaluates.

* If you have 'rate(http_requests total[5m])’, you can evaluate this at a
query step(aka Resolution) of 15 seconds and Prometheus doesn't
care either way.

* What happens is that every 15 seconds, you look back 5 minutes and
take the rate between then and now.

N

Lets Learn, Share & Practice DevOps

Resolution of the graph

* The resolution there is the resolution of the graph, which is
automatically determined by the width of the graph and the time
period it covers. It bears no relation to the scrape interval.

* If you want to make it lower, either zoom out or set it manually in the
res textbox.

N

22000:5choot

Lets Learn, Share & Practice DevOps

Operators

Prometheus supports many binary and aggregation operators.

Binary operators

* Arithmetic binary operators

 Comparison binary operators

 Logical/set binary operators

Vector matching

* One-to-one vector matches

 Many-to-one and one-to-many vector matches
Aggregation operators

N

z2y0pSehool - Qperators

Lets Learn, Share & Practice DevOps

* Arithmetic binary operators
Example: - (subtraction), * (multiplication), / (division), % (modulo), N (power/exponentiation)

« Comparison binary operators
Example: == (equal), '= (not-equal), > (greater-than), < (less-than) ,>= (greater-or-equal), <=
(less-or-equal)

* Logical/set binary operators
Example: and (intersection), or (union), unless (complement)

 Aggregation operators
Example:sum (calculate sum over dimensions), min (select minimum over dimensions) ,max
(select maximum over dimensions), avg (calculate the average over dimensions), stddev
(calculate population standard deviation over dimensions), stdvar (calculate population standard
variance over dimensions), count (count number of elements in the vector), count_values (count
number of elements with the same value), bottomk (smallest k elements by sample value), topk
(largest k elements by sample value), quantile (calculate d-quantile (0 < ¢ < 1) over dimensions)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Operators

Prometheus supports many binary and aggregation operators.

Arithmetic binary operators
The following binary arithmetic operators exist in Prometheus:

addition)

subtraction)
multiplication)

division)

modula)
power/exponentiation)

* +

b

II
II
(
(
II
(

/
*

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Operators

Prometheus supports many binary and aggregation operators.

Comparison binary operators
The following binary comparison operators exist in Prometheus:

(equal)
(not-equal)

s > (greater-than)

¢ < (less-than)

e >- (greater-or-equal)
o <= (less-or-equal)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Operators

Prometheus supports many binary and aggregation operators.

Logical/set binary operators
These logical/set binary operators are only defined between instant vectors:

e and (intersection)
e or (Union)
* unless (complement)

N

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Operators

Prometheus supports many binary and aggregation operators.
Aggregation operators %

Prometheus supports the following built-in aggregation operators that can be used to aggregate the elements of
a single instant vector, resulting in a new vector of fewer elements with aggregated values:

e sum (calculate sum over dimensions)

¢ min (select minimum over dimensions)

¢ max (select maximum over dimensions)

¢ avg (calculate the average over dimensions)

» stddev (calculate population standard deviation over dimensions)
e stdvar (calculate population standard variance over dimensions)
e count (count number of elements in the vector)

¢ count_values (count number of elements with the same value)

* bottomk (smallest k elements by sample value)

e topk (largest k elements by sample value)

e guantile (calculate @-quantile (0 = ¢ = 1) over dimensions)

2v0psScehoot

Lets Learn, Share & Practice DevOps

Operators

sum without (instance) (http_requests_total)

Which is equivalent to:

sum by (application, group) (http_requests_ total)

If we are just interested in the total of HTTP requests we have seen in all applications, we could simply write:

sum{http_requests_total)

To count the number of binaries running each build version we could write:

count_values("version”, build versicn)

To get the 5 largest HTTP requests counts across all instances we could write:

topk(5, http_reguests_total)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Operators

Binary operator precedence

The following list shows the precedence of binary operators in Prometheus, from highest to lowest.

and , unless

or

Operators on the same precedence level are left-associative. For example, 2 * 3 % 2 is equivalentto (2 * 3) %
2 . However ~ isright associative, so 2 ~ 3 ~ 2 isequivalentto 2 ~ (2 ~ 2).

2200p5choot

s Learn, Share & Prac

Functions

abs() holt_winters() round()

absent() hour() scalar()
absent_over_time() idelta()

ceil() increase() sort()

changes|() irate() sort_desc()
clamp_max() label_join() t_

clamp_min() label replace() S_qr ()

day_of_month() In() time()

day_of_week() log2() timestamp()
days_in_month() log10()

delta() minute() vector()

deriv() month() year()

exp() predict_linear() <aggregation>_over_tim
floor() rate() a -

histogram_quantile()

N

resets()

e()

PromOQL - Operators

(addition)
(substraction)
(multiplication)
(division)
(modulo)
(exponentiation)
(intersection)

unless (complement)

equal)
not—equal)
greater—than)

greater-or—-equal)

(
(
(
(less—than)
(
(less—or—equal)
(

union)

. and vector matching

PromQL - Aggregation Operators

stddev bottomk
stdvar topk
count quantile

count_values

PromOQL - Examples

rate(api_http_requests_total[5m])

errorsi{job=“foo”} / total{job="foo”}

2200p:5chool

Lets Learn, Share & Practice DevOps

Using functions, operators, etc.

Return the per-second rate for all time series with the http_requests_total metric name, as measured over the
last 5 minutes:

rate(http_requests_total[5m])

Assuming that the http_requests_total time series all have the labels job (fanout by job name) and instance
(fanout by instance of the job), we might want to sum over the rate of all instances, so we get fewer output time
series, but still preserve the job dimension:

sum by (job) (
rate{http_requests_total[5m])

)

If we have two different metrics with the same dimensional labels, we can apply binary operators to them and
elements on both sides with the same label set will get matched and propagated to the output. For example, this
expression returns the unused memory in MiB for every instance (on a fictional cluster scheduler exposing these
metrics about the instances it runs):

2200p:5chool

Lets Learn, Share & Practice DevOps

If we have two different metrics with the same dimensional labels, we can apply binary operators to them and
elements on both sides with the same label set will get matched and propagated to the output. For example, this
expression returns the unused memory in MiB for every instance (on a fictional cluster scheduler exposing these

metrics about the instances it runs);

I (instance_memory limit bytes - instance memory usage bytes) / 1824 /7 1824
The same expression, but summed by application, could be written like this:

sum by (app, proc) (
instance_memory_limit_bytes - instance_memory_usage bytes
Y/ 1e24 f 1@24

2200p:5chool

Lets Learn, Share & Practice DevOps

If the same fictional cluster scheduler exposed CPU usage metrics like the following for every instance:

instance_cpu_time_ns{app="1ion", proc="web", rev="34d@f%9", env="prod”, job="cluster-manager"}
instance_cpu_time_ns{app="elephant™, proc="worker", rev="34d@f%9", env="prod", job="cluster-manager"}
instance_cpu_time_ns{app="turtle®, proc="api", rev="4d3s513", env="prod", job="cluster-manager"}
instance_cpu_time_ns{app="fox", proc="widget", rev="4d3a513", env="prod”, job="cluster-manager"}

...we could get the top 3 CPU users grouped by application { app) and process type (proc) like this:

topk({3, sum by {(app, proc) (rate(instance_cpu_time_ns[5m]}))

Assuming this metric contains one time series per running instance, you could count the number of running
instances per application like this:

count by (app)} (instance_cpu_time ns)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

String literals

Strings may be specified as literals in single quotes, double quotes or backticks.

In single or double quotes a backslash begins an escape sequence, which may be followed by a, b, f, n, r, t, vor \.

Example:

"this is a string"”
"these are unescaped: “n A\ At°

“these are not unescaped: \n " " A\t

2200psSehool

Lets Learn, Share & Practice

Float literals

Scalar float values can be literally written as numbers of the form [-](digits)[.(digits)].

| -2.43

N

22,0p:Schoot

Lets Learn, Share & Practice DevOps

An expression or sub-expression can evaluate to one of four
types

* Instant vector - a set of time series containing a single sample for each
time series, all sharing the same timestamp
Example node_cpu_seconds_total

* Range vector - a set of time series containing a range of data points over
time for each time series
Example node_cpu_seconds_total[5m]

e Scalar - a simple numeric floating point value
Example: ...

 String - a simple string value; currently unused
Example: roovar

N

2vOpsSehoot

Lets Learn, Share & Practice DevOps

Instant vector Selectors

O Enable query history Try experimental React Ul

Load time: 66ms
promhttp_metric_handler_requests_total Resolution: 14s

Total time seres: £
Execute - insert metric at cursor - =

Graph = Console

“ Moment »

Element

promhttp_metric_handler_requests_total{code="200" instance="localhast:9090" job="prometheus"}
promhtip_metric_handler_requests_total{code="500" instance="localhost:5090" job="prometheus"}
promhttp_metric_handler_requests_total{code="503" instance="localhost:9090" job="prometheus"}
promhttp_metric_handler_requests_total{code="200" instance="localhast:9100" job="node-exporter”}
promhttp_metric_handler_requests_total{code="500" instance="localhost:9100" job="node-exporter}

promhttp_metric_handler_requests_total{code="503" instance="localhost:9100" job="node-exporter”}

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Instant vector Selectors

This is called an instant vector, the earliest value for every series at the moment specified by the
query. As the samples are taken at random times, Prometheus has to make approximations to select

the samples. If no time is specified, then it will return the last available value.

~—
http_reguests_total{status_code="2808"} : (:/

http_requests_total {status_code="583"} = @

http_reguests_total{status_codes="481"} G/__{

22000:5choot

Lets Learn, Share & Practice DevOps

Instant vector Selectors

Example

promhttp_http _requests_total
promhttp_http_requests_total{job="prometheus",group="canary"}
promhttp_http_requests_total{environment=""staging|testing |development",method!="GET"}
promhttp_http _requests_total{job="".*"} # Bad!

promhttp_http _requests_total{job="".+"} # Good!

promhttp_http _requests_total{job="".*",method="get"} # Good!

Label matchers can also be applied to metric names by matching against the internal __name__ label.
http_requests_total is equivalent to { _name__ ="http_requests_total"}

{_ _name__ ="~"job:.*"}
It is also possible to negatively match a label value, or to match label values against regular expressions. The

following label matching operators exist:

o =:Select labels that are exactly equal to the provided string.
o !-:Selectlabels that are not equal to the provided string.

o -~:Select labels that regex-match the provided string.

o !~:Selectlabels that do not regex-match the provided string.

2200p<Schoot

, Share & Practice DevOps

Range Vector Selectors

Range vector literals work like instant vector literals, except that they select a range of samples back from the
current instant. Syntactically, a range duration is appended in square brackets ([]) at the end of a vector
selector to specify how far back in time values should be fetched for each resulting range vector element.

Time durations are specified as a number, followed immediately by one of the following units:

- seconds
- minutes
- hours

- days

w - weeks
y -years

o =T =2 n

Example

promhttp_http_requests_total[5m]

promhttp _http_requests_total{job="prometheus",group="canary"}[2h]
promhttp_http_requests_total{environment=""staging|testing|development",method!="GET"}[60m]

ev0ps§Ch

Lets Learn, Share & Practice DevOps

Range Vector Selectors

O Enzable guery history ry experimental React Ul

) Lead time 41
promhttp_metric_handler_reguests_total[5m] P Re?alft';i: 1.1"51s

Tota! time s2riex 8
Execute - insert metric at cursor -

Graph = Conscle

L Moment »

Element Value

4121 @1585627241.471
4122 @1585627256.471
4123 @158E627271.4T1
4124 @1535627236.471
4125 @1585637301.471
41256 @158E627216.4T1
4127 @1585627331.4T1
4128 @1585627346.471
4120 @158E627361.4T1
4120 @1585627376.471
4131 @1585627391.471
4122 @1EBEGIT406.4T7
4133 @1585627421.471
4134 @1585637436.471
4125 @1E52E627457.477
4126 @ 1535627466471
4137 @1585637431.471
4128 @152E627406.471
4120 @1E53E627511.471
4140 @1585627526.471

promhttp_metric_handler_requestz_total{code="200" instance="lccalhost:9090" job="prometheus")}

2200p:5chool

Lets Learn, Share & Practice DevOps

Range Vector Selectors

This is called a range vector: all the values for every series within a range of timestamps.

S 4
(/) epe—
L)

htp_requests_total(status_code~"200") ¢/ (V) >

. 4

http_requests_total (status_codes"50317) 'I;:./‘(/l - _—
P P 4
http. requests_total(stetus codes"481") - \:// - - !\\.{' - -

2200p:5chool

Lets Learn, Share & Practice DevOps

Offset modifier

The offset modifier allows changing the time offset for individual instant and range vectors in a query.

The following expression returns the value of prometheus_http_requests_total the current query
evaluation time:
prometheus_http_requests_total

The following expression returns the value of http_requests_total 5 minutes in the past relative to the

current query evaluation time:
prometheus_http_requests_total offset 5m

You can use offset to change the time for Instant and Range Vectors. This can be helpful for comparing
current usage to past usage when determining the conditions of an alert.
sum(rate(prometheus_http_requests _total[5m] offset 5m))

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Offset modifier

For example, the following expression returns the value of http_requests_total 5 minutes in the past relative to
the current query evaluation time:

http_reguests total offset Sm

Note that the offset modifier always needs to follow the selector immediately, i.e. the following would be

correct:

| sum{http requests total{method="GET"} offset Sm) // GOOD.

While the following would be incorrect.

sum{http requests total{method="GET"}}) offset 5m // INVALID.

The same waorks for range vectors. This returns the 5-minute rate that http_requests_total had a week ago:

rate(http requests total[Sm] offset 1w)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Subquery

Subquery allows you to run an instant query for a given range and resolution. The result of a
subquery is a range vector.

Syntax: <instant_query> '[' <range> ':' [<resolution>] ']’ [offset <duration>]

 <resolution> is optional. Default is the global evaluation interval.

e Offsets may be added at any place of the query. The following query

returns the number of cache requests for the previous day:
(rate (hits _total([Sm]) + rate(miss total[S5m])) offset 1d
This 1s equivalent to the following PromQL query:

rate (hits _total[5m] offset 1d) + rate(miss total[5m] offset 1d)

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Subquery

Return the 5-minute rate of the http_requests_total metric for the past 30 minutes, with a resolution of 1

minute.

rate(http _requests total[5m])[38m:1m]

This is an example of a nested subquery. The subquery for the deriv function uses the default resolution. Note
that using subqueries unnecessarily is unwise.

| max_over_ time(deriv(rate(distance covered total[5s5])[3@s:5s])[18m:])

22,0p:Schoot

Lets Learn, Share & Practice DevOps

Demo

1. https://www.devopsschool.com/blog/prometheus-promaql-example-qguery-node-exporter/
2. https://www.devopsschool.com/blog/prometheus-promagl-example-query/
3. https://www.devopsschool.com/blog/prometheus-promgl-example-query-monitoring-kubernetes/

https://www.devopsschool.com/blog/prometheus-promql-example-query/
https://www.devopsschool.com/blog/prometheus-promql-example-query/

